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The Hertel-Thirring cell model for unstable systems (of purely attractive 
particles) is solved in the canonical ensemble for arbitrary dimensions. The 
differences between the phase transitions found in the canonical and in the 
microcanonical ensemble are discussed. The cluster phase (with a complete 
collapse in the ground state) exhibits the nonextensive character of the cell 
model. The results of the cell model are compared with molecular-dynamics 
simulations of a one-dimensional model with a rectangular-well pair potential. 
The simulations support the relevance of the cell model to characterize basic 
properties of gravitational systems. 

KEY WORDS:  Cell model; thermodynamic limits; nonextensivity; MD 
simulations; collapsing systems. 

1. INTRODUCTION 

The statist ical  mechanics and molecular  dynamics  of systems with New- 
tonian gravi ta t ional  interact ion between particles are compl ica ted  by the 
long range, the singulari ty at the origin, and the purely at t ract ive character  
of the gravi ta t ional  potential .  These propert ies  give rise to a violat ion of 
the usual s tabil i ty or  extensivity condit ion,  which is valid for short - range 
potentials  with a sufficiently s t rong repulsion at small interpart icle  distan- 
ces (such as the Lennard-Jones  potential) .  Models  for finite systems of 
particles with nonsingular  purely at t ract ive potent ials  have been found to 
exhibit two phases: one with a homogeneous  dis t r ibut ion of the particles in 
space and one wi th  a single cluster f loating in a homogeneous  background  
and conta in ing a considerable  number  of particles. This was found by Hertel  
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and Thir r ing~ in the cell model for three dimensions in the canonical and 
microcanonical ensembles, by Compagner et al. ~2~ in the cell model for 
arbitrary dimensions in the microcanonical ensemble, and for a general 
purely attractive gravitational potential in the canonical ensemble by 
Kiessling. c3~ In the cell model the volume is divided into hypercubic cells of 
equal size and two particles contribute a negative amount - ~  to the poten- 
tial energy if and only if they are in the same cell. As opposed to stable 
models, it was found that the cell model in the microcanonical ensemble 
has a negative specific heat for a certain range of energies. In this paper we 
investigate the phase transition in two different asymptotic limits and com- 
pare the solutions in the canonical and in the microcanonical ensemble in 
arbitrary dimensions. The main result is the analogy between the statistical 
mechanical behavior of unstable systems and the occurrence of clusters 
in cosmology. This analogy is remarkable, since it is based only on the 
crudest approximation of the gravitational potential. The metastable region 
between the homogeneous and the cluster phase in the microcanonical 
ensemble turns out to be the most interesting part of the phase diagram, 
as was stated in ref. 2 and exemplified in the study of perturbed unstable 
systems by Posch et  al. ~4~ 

The shortcomings of the artificial space dependence of the potential in 
the cell model have been investigated with molecular-dynamics simulations 
in two dimensions by Compagner et  al. ~2) In these simulations, the pair 
potential used was 

~b(r) = - e  exp( - rala ~) (1) 

where r is the distance between two particles, e the depth of the potential, 
a the range of the potential, and 6 an even positive integer. Note that only 
the purely attractive character of the gravitational potential has remained. 
To compare the simulations with the cell model, a relation between a and 
the cell size must be adopted. In ref. 2 a crude estimate of the right order 
of magnitude was found by putting the cell size equal to twice the value 
of r at the inflection point of Eq. (1). With this identification, a good 
qualitative agreement between cell model and simulations is found. Similar 
simulations were carried out by Posch et  al. ~5) 

To see whether it would improve the agreement, a model with a rec- 
tangular well of depth e and range a, the case 6 ~ ~ in Eq. (1), is studied 
and compared with the cell model. The discrete character of the pair poten- 
tial then resembles the discrete form of the potential in the cell model better 
than the smooth potential for small values of 6. The simulations reported 
here are restricted to the one-dimensional case. Due to the absence of a 
hard core in Eq. (1) the dependence on the dimension of the system is 
expected to be rather weak. It should be noted that the pair potential in 
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Eq. (1) does not depend on the dimension and is not meant to mimic in 
any sense a genuine one-dimensional gravitational potential, obeying the 
Poisson equation. Unfortunately, the reduction to one dimension did not 
result in the expected decrease of relaxation times. The advantage of 
improved numerical efficiency is apparently shattered by the restriction of 
the kinetic degrees of freedom to only one dimension. 

The motivation for the present study lies in the following questions: 
(1) Does the usual formalism of statistical mechanics still lead to sensible 
thermodynamic results even when the stability condition does not hold? 
(2)Does statistical mechanics provide a general background for the 
discussion of cosmological problems? 

2. THE CELL M O D E L  IN THE C A N O N I C A L  E N S E M B L E  

We sketch the solution of the cell model in the canonical ensemble, 
referring to the earlier paper tz~ for mathematical details and emphasizing 
the differences with the derivation in the microcanonical ensemble. The 
hypervolume V = M L  a in d dimensions contains N particles of mass m 
distributed over M hypercubic cells of size L d. Each pair of particles 
contributes a negative amount - e  to the total potential energy �9 if and 
only if they are in the same cell. When n~ is the number of particles in 
cell i, the total potential energy is 

M 

r 1 8 9  ~ n i (n , -1 )  (2) 
i = l  

The nonextensive character of t# without scaling of e is obvious since �9 is 
proportional to N 2 for certain distributions {n~}. After a straightforward 
integration over the momenta p~ the canonical partition function becomes 
Zc(N, V, T)=Q(N,  V, T)/2 aN with 2=h/(2~mfl- ' )  '/z, ~= l/kT, T the 
temperature, k Boltzmann's constant, and h Planck's constant. The spatial 
integrations appear in the configuration integral Q(N, V, T) defined by 

Q(N, V, T) = L as E' e x p  i M n 7 -- N) 
/,,,/ I-I~= ~ n , !  

(3) 

where the prime in the summation indicates the constraint of particle 
conservation, ,~.M=~ hi= N. Note that the factorial N! in the denominator 
of Zc has canceled against the same factor in the number of possible 
combinations N!/1-[~=I ni! over all cells for a given particle distribution. 
The free energy F(N, V, T) = - f l -  t In Zc(N, V, T) is estimated by replacing 
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the summation over the possible distributions by the largest term. This can 
be justified for large N/M and M by bounding ~F/N: 

with 

d In(A/L) - ym - -  In Y/N <~ flF/N <<. d l n(2/L) - ym 

the number of terms in the constrained summation. The term ),,, is the 
maximum of 

~N 1 M M y =  - ln(2rc) + ~-~ ~= In v~+ ~-~ln.,.,, N - I n  N +  1 

) +~fle i~ NvA-1 -i=l ~ vilnvi (4) 

in the expression Zc = (L/A) dN Z' exp(Ny) when Stirling's approximation is 
used. In (4) the relative occupation number is defined as v~ = ni/N. The first 
three terms in expression (4) are negligible for large N/M and M. Note that 
Eq. (4) is valid for n~>> 1. 

The stationary points of 1' or 0 = y +In  N - 1  are calculated with 
respect to the constraints fl > 0 and conservation of the total number of 
particles, which is restated as vM = 1 - ~ S  1 vi. From (4), they are found 
to be the solutions of 

ln(vi/vM) 
fleNv g (5) 

Vi/VM-- 1 

apart from the solution v;= 1/M for all i, which is always stationary. 
Equation (5) turns out to be the same stationarity condition as in the 
microcanonical ensemble once fleN is rewritten in terms of the energy 
parameter r/= 2E/eN 2-  1/N [using the definition E =  - ( l /Z, . )aZc/O~ and 
the maximum term approximation]: 

d 
fleN= (6) 

Of course, in the canonical ensemble the energy/~ is a statistical quantity 
and the temperature a fixed parameter, whereas in the microcanonical 
ensemble it is the other way around. Hereafter, the distinction between E 
and E follows from the context. Total collapse occurs for r/= -1 .  The 
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monotonic  decreasing character-of the RHS of relation (5) as a function of 
Vi/VM provides the solutions 0 < v~ = v 2 . . . . .  vq < % +  l . . . . .  v m ~< 1 for 
O < ~ q < ~ M -  1 after relabeling the cell numbers, since the LHS of Eq. (5) is 
constant. The stationary points of 0 are maxima if the eigenvalues 2 of the 
characteristic equation 

O~O- 21 = 0 
Ovk Ovl 

with I the identity matrix are all negative. The quantities s = f l e N -  1/v M, 

c = 2s  - 2, r = f l e N -  1/v I , a = s + r - 2, and t = 0 appearing as elements in 
the characteristic matrix are modifications of equivalent definitions [with 
t :~0  and replacement of fl via Eq. (6)] for the microcanonical ensemble; 
see ref. 2. A maximum is obtained if and only if q = M -  1 and 

2 = ( M -  1 ) s + r < O  (7) 

Thus, the two remaining solutions constitute a homogeneous phase with 
v k = v .  and a cluster phase with Vk < VM for k = 1 ..... M -  1. 

It turns out that all the thermodynamic quantities in the canonical as 
well as the microcanonical  ensemble are equivalent using relation (6) to 
express temperature in terms of energy or vice versa, but the energy or 
temperature intervals for which the homogeneous or cluster phase exist are 
different. The condition (7) for the canonical ensemble and the equivalent 
one for the microcanonical  ensemble determine these intervals as a function 
of v . ,  N, and M. 

According to condition (7), the homogeneous phase exists for 
T >  T h = e N / k M ,  which in terms of the energy is exactly the range in the 
microcanonical ensemble r / > q h =  ( d - 1 ) / M .  The free energy Fh in the 
homogeneous phase is 

f l F h ( N ,  V, T ) = N ( d i n 2 + l n N - l - O h )  (8) 

with Oh = �89 1) + In M. The temperature is given by 

e N  
(9) 

as follows from Eqs. (5) and (6) after substitution of v i= 1 / M .  Two 
different definitions of pressure can be used, because the variation in the 
volume V =  M L  d can take place with either M or L fixed, giving PM or PL, 
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respectively. With M fixed, the ideal gas law results, while with L fixed, an 
interaction term is added: 

OF N k T  OF N k T  eN 2 

P M = - -  - ~  M-- V , P L = -- -ff-V L = V 2 M V 

The temperature in the cluster phase is derived from the stationarity 
condition (5) and relation (6) with V=VM and v ~ = ( 1 - v ) / ( M - 1 ) .  One 
finds 

T = k ( M _ l - - - - - - - ~ ) l n [ ( l _ v ) / ( M _ l ) v ] =  ~ q-~ ~ (10) 

The cluster phase exists if condition (7) is obeyed. Elimination of the 
temperature by using Eq, (5) yields 

( M -  1)v 
M v ( 1 - v ) l n - -  ( M y - l ) < 0  (11) 

1 - - v  

which is identical to the requirement of a positive specific heat, i.e., 
Oq/OT= (Oq/Ov)(Ov/tgT)> 0, in the canonical ensemble. The resulting tem- 
perature range is 0 < T <  Tr as depicted in Fig. 1, where the relation 
between the reduced temperature T *  - dkT/2e  versus the energy parameter 
q is plotted along with the various transitions and hystereses. The corre- 
sponding energy range in the microcanonical ensemble lies between 

- 1 < q < ~/r as shown in Fig. 1, qr being the energy where the tangent of 
temperature as a function of energy becomes infinite. The requirement 
Orl/Ov < 0 gives the same energy range when the stationarity condition for 
the microcanonical ensemble 

d ( M v  - 1 ) 1 - 2v + M v  2 
'7 = (12) 

( m - 1 ) l n [ ( m - 1 ) v / ( 1 - v ) ]  m - I  

is used. The free energy Fc in the cluster phase has the form 

t i C ( N ,  v, 
T ) = d l n ~ + l  n ) l  N -  1 - 0 c  (13a) 

N L 

with 

Oc= - , l   '3b, 
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Fig. 1. Compound picture for the cell model of the reduced temperature T* = dkT/2e versus 
the terms 0 in the free energy which are dependent on the occupation number v, and versus 
the energy parameter r/. The quantity ~k in the entropy which depends on v is also shown. The 
parameters are N = 100, M = 50, d =  3, V*= Via a, and p*=-Ntrd/V = 0.8. Horizontal dashed 
lines with arrows at T* and T* indicate the hysteresis in the canonical ensemble. The vertical 
dashed lines with arrows at t/h and ~/c show the hysteresis in the microcanonical ensemble. 
Phase transitions are defined to occur at intersections of the curves for 0 and ff in the 
homogeneous and cluster phases at temperature T* and energy r/t in the canonical and 
microcanonical ensembles, respectively. 

3. C A N O N I C A L  V E R S U S  M I C R O C A N O N I C A L  E N S E M B L E  

T h e  r e l a t i ons  b e t w e e n  t e m p e r a t u r e ,  energy ,  free energy ,  a n d  e n t r o p y  in 

Fig. 1 s h o w  the  o c c u r r e n c e  of  hys t e re ses  a n d  p h a s e  t r a n s i t i o n s  in b o t h  the  

c a n o n i c a l  a n d  the  m i c r o c a n o n i c a l  ensemble .  T h e  h o r i z o n t a l  d a s h e d  l ines 

(a t  T *  a n d  T * )  a n d  the  ver t ica l  o n e s  (a t  r/h a n d  r/c) w i th  a r r o w s  d e n o t e  

the  hys te res i s  in  the  two  e n s e m b l e s .  P h a s e  t r a n s i t i o n s  a re  a s s u m e d  to  o c c u r  

w h e n  the  free ene rg ies  o r  e n t r o p i e s  in the  h o m o g e n e o u s  a n d  c lus te r  p h a s e s  

a re  equal .  T h e  e n t r o p y  ~21 a n d  free e n e r g y  for  la rge  M a n d  N / M  a re  g iven  by  
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S 1 {2~zmeL2"~ [" 1 ) 1 
- ~ = ~ d l n ~ ) + ~ s d - 1  l n U + ~ d +  1 

1 ( ~ , , / 2 )  M 
+ ~ d l n  q+ v - ~ vilnvi 

i = 1  i = 1  

~---s = d ln 2 + ln -~  - ~ fle i ~ Nv ~ - I + ~ v j ln v i 
i = 1  

(14) 

(15) 

The quantities 

O=�89 N v ~ - I  - vilnv~ (16a) 
i 1 i = 1  

~0=�89 q+ v - ~ v~lnv i (16b) 
i = 1  / i = 1  

represent the terms in the free energy and entropy, respectively, that vary 
with respect to temperature and energy, respectively, as well as with the 
relative occupation number. Equation (16b) appeared in the earlier publi- 
cation. ~2) The phase transition temperature in the canonical ensemble is 
denoted by TI and the transition energy in the microcanonical ensemble 
by r/t. The region qz <~ q <~ qc of negative specific heat found to exist in the 
microcanonical ensemble is by definition excluded in the canonical 
ensemble, for which the surrounding heat bath bridges the region with a 
constant-temperature phase transition. 

There is another way to consider the stationary points of the entropy 
or free energy of the cell model. The free energy is given as a function of 
T and v. Minimization of the free energy with respect to T is possible by 
considering v= v(T), a relation implicit in the stationarity condition (5). 
Two minima will arise: one corresponding to the homogeneous phase and 
one to the cluster phase. For temperatures T <  Tt the cluster solution 
belongs to the absolute minimum of F, implying that for the interval 
Th< T< Tt the cluster phase is metastable, and for T~< T<  Tr the 
homogeneous phase is metastable. The same kind of reasoning is valid 
for entropy maximization in the microcanonical ensemble, resulting in 
metastable states for homogeneous and cluster phases in the intervals 
r/t < r/< qr and qh < r/< q,, respectively. 

A Maxwell construction (~) graphically elucidates the relationship 
between both ensembles. Conservation of entropy z lS=,rE/kT  yields 

i~ 
3 dq q 3 - q l  
, T(q) T, (17) 
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Fig, 2. Inverse reduced temperature I/T* versus energy ~. The entropy change between ~ 
and t13 in both ensembles is equal. The Maxwell construction ensures that the areas between 
the theoretical curves and 1/T* below and above that value are equal, where it is understood 
that the cluster phase ends and the homogeneous phase starts at ~I~, 

The changes in en t ropy  in both ensembles are equal:  Figure 2, depict ing 
the inverse t empera ture  versus the energy paramete r  r/, shows that  the 
areas between the theoret ical  curves and the t ransi t ion tempera ture  I/T* 
below and above  that  value are the same for the microcanonical  cluster 
and homogeneous  phases for - 1 < ~/< ~/t and r/, < ~/, respectively. 

The large-system behavior  can be approached  in terms of different 
scaling procedures,  indicated by I and II. Procedure  I, used by Hertel  and 
Thirr ing,  tt) restores the extensivity in the cell model  by taking eN, V/N, 
E/N, and M = V/L d as constant  for N ---, ~ ,  leading to the usual way thermo-  
dynamics  is found from statist ical  mechanics. The scaling is similar to a 
mean-field approach  for a van der Waals  gas. In this limit the thermo-  
dynamic  quanti t ies  remain  a function of the cell number  M, the length L 
of the hypercube increases to infinity, and the depth  of the potent ial  
reduces to zero. The first two cumbersome terms in the ent ropy and free 
energy writ ten in Eqs. (14) and (15), respectively, combine to finite quan- 
tities in the appropr i a t e  the rmodynamic  limit. The min imum tempera ture  

822'7.1, I-2-5 
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in the homogeneous phase is T~ = (eN)~/(Mk) and the corresponding 
energy is r/~ = ( d -  1)/M, which is constant in the limit. 

This procedure is perfectly sound from a mathematical point of view. 
However, the remaining dependence on M and the behavior of L as N~/d 
are artificial from a physical point of view, and so is the scaling of e with 
1/N. Due to these features, the procedure cannot be used to obtain from 
the cell model an estimate of the asymptotic properties of systems with the 
true pair potential of Eq. (1), all having identical values of a and e but 
different values of V = Na d and E = Ne. 

Therefore, a second procedure, II, has been proposedl2J: N---, oo with 
L, V/N, and M/N constant, and with E/N or T constant for respectively the 
microcanonical or the canonical ensemble. In this procedure the nonexten- 
sive character of the cell model is maintained, and the thermodynamic limit 
does not exist. A third procedure is to let N---, oo with L, V/N, M/N, and 
E/N 2 constant. This would differ from a rescaled version of I in having the 
number of cells grow with system size. 

It is our belief that II, where the energy only grows with N, is relevant 
for our universe. We think that II makes the cell model interesting from a 
cosmological point of view, even though it provides only the crudest 
approximation to the true gravitational potential. It is not so strange to 
conclude that an essential dependence of detailed properties of the system 
on its size, however large, reflects a basic property of the actual universe, 
even though the cell model completely neglects the singularity and the long 
range of the true gravitational potential. 

Only the main results obtained, in particular from Eqs. (7) and (12), 
with procedure II will be given here, postponing a further discussion to a 
later paper. It is found that in the canonical ensemble, at finite tem- 
peratures, only the completely collapsed state survives when the system 
becomes larger and larger; in particular, all homogeneous states become 
increasingly metastable. In contrast, in the microcanonical ensemble for 
larger and larger systems it is only the region around ~/= 0 that is relevant. 
At r/= 0 the number of particles in the collapsing cluster is asymptotically 
given by nM= dN/ln M, whereas the homogeneous background approaches 
the constant density N/M. In this situation, transient nonequilibrium states 
with (many) more than one collapsing cluster are expected to become more 
and more important. The appearance of logarithmic quantities is typical for 
the nonextensive behavior. The entropy surface becomes extremely fiat, 
indicating divergent relaxation times: in fact, the maximum-term method as 
applied to Eq. (4) is found to degenerate. 

The Hertel and Thirring cell model seems to be most useful and physi- 
cally sound in the microcanonical ensemble in procedure II for a large but 
finite amount of particles. It tries to mimic the basic instabilities due to the 
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gravitational potential for systems that are not easily put into a heat bath. 
For large N, with procedure II dictating the behavior of the other inde- 
pendent variables, the cell model tends to be in the metastable region at 
r / ~ 0  (to avoid this region one would have to assume that E behaves 
asymptotically as N2), which becomes a critical point of the system. The 
fluctuations of the cluster size in the associated pair-potential models will 
also appear to be quite large. Our expectation that large systems with 
purely attractive potentials are likely to be trapped in a critical state of 
many clusters in a homogeneous background corresponds qualitatively 
with the situation found in the universe. Large fluctuations with long 
lifetimes are to be expected for gravitational systems in nonequilibrium 
states. 

4. O N E - D I M E N S I O N A L  C O L L A P S I N G  S Y S T E M  

Consider a one-dimensional model with N particles of mass m with 
coordinates x~,x2,...,xN and momenta Pl,P2,...,PN in a volume of 
length /. The discrete pair potential 

{0_ i f r > ~ a  
r = e otherwise (18) 

is a rewritten version of the potential (1) for 6 --* oo: it is a rectangular well 
of depth - e  and width a. The total potential energy q5 is 

N 

i < j  

with rij= Ixi-Xil, and the kinetic energy is Eki n =~-'.N=I p~/2m. Exact 
solutions for N =  2, 3, 4 are readily found for this one-dimensional model, 
both for periodic and nonperiodic boundary conditions. 

Simulations of the one-dimensional particle model are based on the 
method due to Alder and Wainwright t6~ for molecular dynamics of systems 
with discrete pair potentials. The numerical method distinguishes among 
the three different collisions involved. A collision is defined to occur when 
the distance between a pair of particles becomes equal to a. The three types 
of collisions are: a bounce, in which two particles do not have enough 
kinetic energy to cross the potential barrier of - e ,  which therefore acts as 
a solid wall; dissociation, in which two particles escape their mutual poten- 
tial well with less kinetic energy than before the collision; and capture, two 
particles experience their attraction by a push towards each other. Changes 
in speed and kinetic energy after a collision are calculated from the conser- 
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vat ion of momen tum and energy per pair  of coll iding particles. Upcoming  
collision events are handled  in time by using an ordered list of collision 
times. The overhead involved in mainta in ing  the list of collision times is 
reduced ingeniously,  16~ decreasing the computa t ion  time drastically.  A com- 
par ison with the cell model  is achieved by equat ing L = 2a, taking the cell 
size twice as large as a [for c5 ---, oo, the inflection poin t  of Eq. (1) occurs 
at r= t r - I .  The s imulat ions are performed with per iodic  bounda ry  condi-  
t ions on both a min icompute r  (/~Dutch) and on a works ta t ion  (Silicon 
Graphics) ,  the lat ter  being about  40 times faster than the former. The runs 
are taken in sequences of increasing ("heat ing")  or of decreasing energy 
("cooling"),  or  independent  of one another  with r andom or  ordered  initial 
condit ions.  In the first case of a series of coupled runs the final configura- 
t ion (posit ions and velocities) of a run is the initial configurat ion for the 
next run. The kinetic energy is rescaled in that  process such as to accom- 
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F i g .  3. T h e  t r a j e c t o r i e s  o f  N = 2 0  p a r t i c l e s  w i t h  a s q u a r e - w e l l  p a i r  p o t e n t i a l  ( ~ / = 0 . 1 ,  

p * = 0 . 9 5 ) .  T h e  l ine  s e g m e n t  b e l o w  i n d i c a t e s  t h e  p o t e n t i a l  w i d t h � 9  T h e  p a r t i c l e s  s t a r t  in  a 

s l i g h t l y  d i s t o r t e d  m o t i o n l e s s  r o w  e x c e p t  f o r  t h e  o u t e r m o s t  p a r t i c l e s ,  w h i c h  h a v e  o p p o s i t e  

v e l o c i t i e s .  E a c h  c o n f i g u r a t i o n ,  d e p i c t e d  h o r i z o n t a l l y ,  is s e p a r a t e d  b y  4 0  c o l l i s i o n s � 9  
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modate  a higher or lower-total energy. The procedure decreases the total 
equilibration time considerably if the increments or decrements of the 
energy are not too large. The initialization of the first run in a sequence or 
a separate simulation is chosen to be either random or a slightly distorted 
row with all particles motionless except the two outermost  particles. The 
distortion of the row avoids the occurrence of exactly equal collision times 
excluded in the numerical algorithm for practical reasons. As an example, 
the time development of  20 particles with the pair potential of Eq. (18) is 
given in Fig. 3. For  100 configurations, each separated by 40 collisions, the 
positions (horizontal) are plotted as a function of time (vertical). 

Measurements of  temperature, pressure, cluster size, and specific heat 
are taken after an equilibration time, determined by the disappearance 
of drifts in the kinetic energy amid the existent fluctuations. In Fig. 4, 
a plot of the (reduced) kinetic energy E*i, versus the time, equilibration 
is achieved after 5000 (dimensionless) time units. The pressure p is deter- 
mined by a method of Hoover  and Alder. c7) The specific heat Cz  is 
calculated using an approach developed by Lebowitz e t  a l .  (8) The relative 
occupat ion number  v = ( N o ~ N )  in the numerical experiments, based on the 
amount  of particles Nc in a cluster, is determined using an algorithm of 
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Fig. 4. Reduced kinetic energy E~i . versus time of simulations with N=60, ~/=0.0259, 
p*= 0.8. Equilibration is achieved at (dimensionless) times > 5000. The first peak corresponds 
to the formation of a cluster, which is initially rather "warm." The other peaks correspond to 
typical collective oscillations of the cluster. 
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Stoddard. ~9) Defining a critical radius re, two particles belong to the same 
cluster if their interparticle distance is less than re given the constraint that 
each particle is part of only one cluster at a time. Therefore, a cluster of 
particles might have the appearance of a chain, which accounts for the 
overestimation of the actual cluster size in the homogeneous phase. The 
following dimensionless quantities are introduced for computational 
convenience: 

Eki n dk T Na a 
T* = , p* = E *i, - , 2~ V 

5. S I M U L A T I O N S  A N D  CELL M O D E L  

The simulations with the rectangular-well pair potential are in closer 
correspondence to the solution of the cell model than simulations t-''5) with 
smooth pair potentials, with lower values of 6 (see the discussion in the 
appendix of ref. 2 of the independent-particle model as a description for the 
completely collapsed state). A plot of T* versus 17 reveals the agreement 
between cell model (solid and dashed lines) and simulations for N =  60 and 
N =  120 for p* =0.8 in Figs. 5a and 5b. It should be realized that the cell 
model is solved provided N / M  and M are large, while the number of par- 
ticles in the simulations above is quite small. Nevertheless, the similarities 
are striking. The open circles and squares in Fig. 5a denote a sequence of 
measurements in a heating and cooling series, respectively. Insufficient 
equilibration times for -0 .3  <r /<0 .1  caused the large difference between 
cell model and measurements as well as the fluctuations in the data during 
the heating sequence. Longer equilibration times were used in the cooling 
sequence: the squares lie closer to the predicted curve for the cell model 
and the region of negative specific heat exists. Closed circles indicate results 
obtained in much longer separate runs. The simulations in Fig. 5b for 
N--- 120 particles confirm the agreement for cooling sequences with longer 
equilibration times. Fluctuations are intrinsic in the cluster phase, 
especially in the region of negative specific heat, where the kinetic energy 
exhibits large wavelike fluctuations ( ~ 3 0 % )  and longer periods are 
required to provide adequate statistics for the measurements. The insuf- 
ficient computation time is apparent in the slight scatter in the cluster 
phase in Fig. 5b. The temperature in the cell model and in the true pair- 
potential model are equal for r / ~ - 1 ,  where T * ~ � 8 9  
which for 6---, ~ is equal to �89 1); see the appendix of ref. 2. At 
t /~ - 1 ,  the system is in the state of complete collapse where the amount 
of kinetic energy is too small to break any of the � 8 9  1 ) bonds between 
the particles. In the homogeneous phase one has T*=�89 with 
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rio = 1 / N  assuming  ideal  gas b e h a v i o r  and rio = 1 / M  for the cell model .  The  
equ iva lence  close to the g r o u n d  state and  in the h o m o g e n e o u s  phase  
be tween  the s imula t ions  and  the cell m o d e l  expla ins  the bet ter  a g r e e m e n t  

re la t ive  to fo rmer  s imula t ions  at lower  values  of  6; there  is no t  m u c h  

f r eedom left for large dev ia t ions  at i n t e rmed ia t e  energies.  The  re la t ive  
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Fig. 5. Temperature T* versus energy q with p*=0.8 for the cell model (solid lines; the 
dashed lines indicate the metastable transitions) and as observed in the simulations (circles 
and squares). Apart from the length scale L = 2 a  there are no adjustable parameters. 
(a) N=  60. Open circles denote a heating and squares a cooling sequence. Closed circles are 
separate measurements. (b)N = 120. Measurements in a cooling sequence. 
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Fig. 6. 
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The relative occupation number v of the cluster for the cell model (solid and dashed 
lines) and the simulations with N =  60, p * =  0.6. 

Fig. 7. Position-time plots for N=60,  p*=0.8.  A total of 300 configurations is plotted 
horizontally every 12,000 collisions. The width of the square well is indicated by the line 
segments below the figures. (a)The system is in the homogeneous phase, r/=0.01. (b)The 
system is in the cluster phase, r/= -0.3, v = 0.7 (the specific heat is negative). Both simulations 
are part of the cooling event in Fig. 5a. 
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occupation number  v of- the cluster is plotted in Fig. 6 for 60 particles 
and p* =0.6.  Deviations of v between cell model and simulation in the 
homogeneous phase originate in the systematic overestimation of the 
cluster size inherent to the use of Stoddard's  algorithm, tg~ Specific heat and 
pressure show the same behavior with larger fluctuations, because these 
indirectly measured quantities require more computation.  The phase trans- 
ition and the movement  of the cluster are clearly visible in the posi t ion-  
time plots of Fig. 7 for N = 6 0 ,  p * = 0 . 8 ,  ( a ) r /=0 .01  just in the 
homogeneous phase, and (b) 11 = -0 .3 ,  v = 0.7 in the cluster phase. A total 
of 300 configurations is plotted horizontally, separated vertically, in time, 
by 12,000 collisions. The degree of grayness is a measure for the density. 
The line segment underneath the horizontal position axis denotes the width 
a of the potential well. The variation in the kinetic energy is shown in 
Fig. 8 for N = 6 0 ,  p * = 0 . 8 ,  r /=  -0 .4 ,  v=0 .77  as a function of time in 

Fig. 8. Variation of kinetic energy E~'~n as a function of time and the corresponding position- 
time plot for N = 60, p* =0.8, r/= -0.4, v = 0.77. The simulation is part of the heating event 
in Fig. 5a. 
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combination with the corresponding position-time diagram. A drop in 
kinetic energy indicates the breaking of interparticle bonds. The rather 
large fluctuations are a typical feature of these unstable systems; they are 
due to collective cluster modes. 

6. C O N C L U D I N G  R E M A R K S  

The simulations of the one-dimensional model with the rectangular- 
well pair potential described in this paper agree even better with the cell 
model than earlier simulations with smooth, purely attractive short-range 
potentials, due to the similarity of the two models near the ground state. 

It would be worthwhile to compare the solution of the cell model with 
an analytical solution of the one-dimensional model with a rectangular-well 
pair potential, which would elucidate the differences for systems that are 
too large for simulation. Analytical studies of this one-dimensional model 
are in progress. 

The Hertel and Thirring cell model is one of the few analytically 
tractable models for unstable systems in arbitrary dimensions, both in the 
canonical and the microcanonical ensemble. Two scaling procedures in the 
thermodynamic limit have been discussed. In the first scaling procedure, 
the cell size and the range of the purely attractive pair potentials are 
adjusted to ensure the extensivity of the model in the cluster phase, which 
thus becomes an ordinary statistical mechanical model. In the second 
scaling procedure cell size and range are kept fixed on physical grounds. It 
leads to rather unusual nonextensive behavior in the cluster phase. For 
N ~  ~ ,  complete collapse at r / ~ - 1  is the only state that survives in 
the canonical ensemble. More interesting for us is the microcanonical 
ensemble, with procedure II, in which large systems are most likely found 
in the critical state at r /~ 0. Due to its nonextensivity and large fluctuations 
this state exhibits a certain cosmological appeal. 
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